Python数据分析基础
内容简介:
想深入应用手中的数据?还是想在上千份文件上重复同样的分析过程?没有编程经验的非程序员们如何能在最短的时间内学会用当今炙手可热的Python语言进行数据分析?
来自Facebook的数据专家Clinton Brownley可以帮您解决上述问题。在他的这本书里,读者将能掌握基本Python编程方法,学会编写出处理电子表格和数据库中的数据的脚本,并了解使用Python模块来解析文件、分组数据和生成统计量的方法。
学习基础语法,创建并运行自己的Python脚本
读取和解析CSV文件
读取多个Excel工作表和工作簿
执行数据库操作
搜索特定记录、分组数据和解析文本文件
建立统计图并绘图
生成描述性统计量并估计回归模型和分类模型
在Windows和Mac环境下按计划自动运行脚本
作者简介:
Clinton W. Brownley
博士,Facebook数据科学家,负责大数据流水线、统计建模和数据可视化项目,并为大型基础设施建设提供数据驱动的决策建议。
目录 · · · · · ·
前言 xi
第1章 Python 基础 1
1.1 创建 Python 脚本 1
1.2 运行 Python 脚本 3
1.3 与命令行进行交互的几项技巧 6
1.4 Python 语言基础要素 10
1.5 读取文本文件 35
1.6 使用 glob 读取多个文本文件 39
1.7 写入文本文件 42
1.8 print 语句 46
1.9 本章练习 47
第2章 CSV文件 48
2.1 基础 Python 与 pandas 50
2.2 筛选特定的行 58
2.3 选取特定的列 64
2.4 选取连续的行 67
2.5 添加标题行 69
2.6 读取多个 CSV 文件 71
2.7 从多个文件中连接数据 75
2.8 计算每个文件中值的总和与均值 78
2.9 本章练习 81
第3章 Excel 文件 82
3.1 内省 Excel 工作簿 84
3.2 处理单个工作表 88
3.3 读取工作簿中的所有工作表 101
3.4 在 Excel 工作簿中读取一组工作表 106
3.5 处理多个工作簿 108
3.6 本章练习 117
第4章 数据库 118
4.1 Python 内置的 sqlite3 模块 119
4.2 MySQL 数据库 131
4.3 本章练习 146
第5章 应用程序 147
5.1 在一个大文件集合中查找一组项目 147
5.2 为 CSV 文件中数据的任意数目分类计算统计量 158
5.3 为文本文件中数据的任意数目分类计算统计量 167
5.4 本章练习 174
第6章 图与图表 175
6.1 matplotlib 175
6.2 pandas 183
6.3 ggplot 184
6.4 seaborn 186
第7章 描述性统计与建模 192
7.1 数据集 192
7.2 葡萄酒质量 194
7.3 客户流失 203
第8章 按计划自动运行脚本 209
8.1 任务计划程序(Windows 系统)209
8.2 cron 工具(macOS 系统和 Unix 系统)215
第9章 从这里启航 220
9.1 更多的标准库模块和内置函数 221
9.2 Python 包索引(PyPI):更多的扩展模块 222
9.3 更多的数据结构 232
9.4 从这里启航 234
附录A 下载指南 236
附录B 练习答案 245
作者介绍 247
封面介绍 247
第1章 Python 基础 1
1.1 创建 Python 脚本 1
1.2 运行 Python 脚本 3
1.3 与命令行进行交互的几项技巧 6
1.4 Python 语言基础要素 10
1.5 读取文本文件 35
1.6 使用 glob 读取多个文本文件 39
1.7 写入文本文件 42
1.8 print 语句 46
1.9 本章练习 47
第2章 CSV文件 48
2.1 基础 Python 与 pandas 50
2.2 筛选特定的行 58
2.3 选取特定的列 64
2.4 选取连续的行 67
2.5 添加标题行 69
2.6 读取多个 CSV 文件 71
2.7 从多个文件中连接数据 75
2.8 计算每个文件中值的总和与均值 78
2.9 本章练习 81
第3章 Excel 文件 82
3.1 内省 Excel 工作簿 84
3.2 处理单个工作表 88
3.3 读取工作簿中的所有工作表 101
3.4 在 Excel 工作簿中读取一组工作表 106
3.5 处理多个工作簿 108
3.6 本章练习 117
第4章 数据库 118
4.1 Python 内置的 sqlite3 模块 119
4.2 MySQL 数据库 131
4.3 本章练习 146
第5章 应用程序 147
5.1 在一个大文件集合中查找一组项目 147
5.2 为 CSV 文件中数据的任意数目分类计算统计量 158
5.3 为文本文件中数据的任意数目分类计算统计量 167
5.4 本章练习 174
第6章 图与图表 175
6.1 matplotlib 175
6.2 pandas 183
6.3 ggplot 184
6.4 seaborn 186
第7章 描述性统计与建模 192
7.1 数据集 192
7.2 葡萄酒质量 194
7.3 客户流失 203
第8章 按计划自动运行脚本 209
8.1 任务计划程序(Windows 系统)209
8.2 cron 工具(macOS 系统和 Unix 系统)215
第9章 从这里启航 220
9.1 更多的标准库模块和内置函数 221
9.2 Python 包索引(PyPI):更多的扩展模块 222
9.3 更多的数据结构 232
9.4 从这里启航 234
附录A 下载指南 236
附录B 练习答案 245
作者介绍 247
封面介绍 247
作者: [美] Clinton W. Brownley
出版社: 人民邮电出版社
译者: 陈光欣
出版年: 2017-8
页数: 272
ISBN: 9787115463357
订阅评论
登录
请登录后发表评论
0 评论